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ABSTRACT

A theoretical analysis of the main features
of high-energy interactions is performed. First
of all, by applying dispersion theory to the elas-
tic scattering amplitude for high -~ energy and low-
momentum transfer we have obtained expressions for
the shape of diffraction scattering and for the
total cross-sections.

The form of those results has suggested a
definite model for the most important inelastic
processes., In this model a well-defined group of
Feynman graphs, the "most peripheral" ones, give

the dominating effect in high~energy collisions.
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. I. INTRODUCTION

A great effort, both experimental and theoretical, has recently

been devoted to the study of strong interactions at high energy.

The theoretical investigations have followed many different

directions.

First of all, severel estimates of cross-sections, multipli-
cities, etc.,, have been carried out on the basis of the statistical model1
which is essentially based on the idea that a very complicated inferac-
tion tekes place in a certain volume V and that the probabilities for the

different:final states are determined by the available phase space.

A different and complementary approach is the peripheral onez)
which studies those events in which only one pion is»exchapged.between

the two colliding particles.,

A very interesting point of view has recently been developed
by Chew and Frautschi’’: if one considers the elastic scattering ampli=-
tudes at high energy it is possible to meke use of the MandelstamA) re=
presentation Whlch gives an unambiguous prescrlptlon to locate the singu-

larities of the amplltude.

In addition to that, it is p0551ble by using unltarlty to ob-
tein explicit formulae for the singularities located near the physical

region in the so-called "strips".
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The "strip approximation” approach tries to evaluate the ef-
fect of peripheral collisions on elastic scattering. It has the ad-
vantage on the Drell - Salzman method that, due to the possibility of

~ writing down a completé spectrél representation, a greater control on

the different approximations is possible.

On the other side, the amount of information on high-energy
physics which one obtains from the Chew and Frautschi programme is

limited to diffraction scattering and to the total cross=-section.

In this paper we wish to propose a general model for high-~

energy processes suggested by dispersion theory.

As in Chew and Frautschi, we shall start by considering elas-
tic scattering, and in particular the absorptive part of the elastic
amplitude for large energies and small momentum transfer. This ampli-

tude is particularly interesting because:

1) the forward amplitude is related to the total cross-section by the

optical theorem;

2) the angular dependence of this amplitude is mainly due to the absorp=
tion of the incident wave by inelastic processes and it will depend
in an essential manner on the way this absorption takes place. Let
us discuss a qualitative picture of the high-energy scattering. The

main experimental features are the following:

i) the total cross-section has an approximately constant value of

the order of the square of the pion Compton wavelength;

ii) the scattering angular distribution is concentrated in a small
1 " region of the momentum transfer of some units of the square of

the meson mass.

It Will‘be Shown that unitarity gives a simple.relétioh between
the size of the total cross-section and the width of the elastic diffrac-
tion peak. ' '

| The generalbfeatures i) and ii) show that the effective radius
of the target nucleon from high-énergy process is of the order of the

pion Compton wavelength 1/u.
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, We oan get the following picture of the hlgh-energy collision.
The nucleon can be visually divided 1nto two parts: a core with a radius

‘of the order 1/3u, and the external meson cloud.

About the core we know very llttle; its strucﬁure is very
compllcated slnce it depends on states with several virtual partlcles.
Very probably it will act like a completely absorptlve sphere, in any
case because of the geometrical limitations on cross-section it can only

contribute to a small fractlon of the total cross-sectlon.

. The outer part of the nucleon plays a very 1mportant role in
the process (as shown by the large 51ze of the total cross—seotlon), it
acts as a seml-transparent medlum whose absorptlon will decrease with

the -cloud den51ty( ) and . thus w1th the dlstance from the centre.

Our approach is based on the-c¢lassification of the high-energy

phenomena into those due to the cloud and to the core,

“'On ‘the ‘basis of the ‘geometrical considerations discussed pre-
Viously,‘the'first ones. are expected to be the most frequent and will

be the object of our theoretical investigation.

In Section II a general scheme is introduced to study the ab-
sorptive part of the scattering amplitude. Using the Mandelstam re-
presentation in a manner similar to Chew and Frautschi, a non-linear

integral for the amplitude is.obtained.

In Section III a method of solution is discussed., The solu-
tion is obtained in the form of a sequence of terms in which the only
external parameters are the low-energy scatterlng eross-sections. In
this manner deflnlte expre551ons are obtalned both for the total cross-
sectioﬁsbaﬁd for the scattering amplitudes(#$).“ :

As alreedy discussed eaflier, the form of the diffraction pat=-
tern ie determined by the manner in which the absorption mechanism takes

place. In this manner our result for diffraction and for the total

(*) This is confirmed experimentally by the fact that Og1 is smaller
. than opnggete

(**) An independent 1nvest1gatlon on high-energy diffraction scattering

' has been recently carried out by C. Goebel (see reports of ‘the CERN
Conference on Theoretical Aspects of High-Energy Phenomena) leading
to physical conclusions very similar to ours.
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cross-sections will enable us (Section IV) to construct a general model
for all inelastic processes., This model has a very simple physical
interpretation invterms of the Feynman graphs implying fhat all fihal
particles are produced directly either by the two colliding particles
or By the pion which is exchanged between the incoming particles. The
only parameters entering in the model are low-energy parameters, like

the pesition and width of the‘pion—nucleon and pion-pion resonances.

II. THE INTEGRAL EQUATION FOR THE ABSORPTIVE AMPLITUDE

In the following we shall deal only with no-spin-flip, no-
:1sosp1n—f11p amplltudes. this is because it is intuitively clear (and
experlmentally verified where’ experiments are" avalleble) that diffrac-
tion shall mainly be present in ‘this amplitude, This will allow us

~to forget all the .complications which arise from the spin and isospin

of the particles.:

We shall treat the high-energy elastic scattering in which
strongly interacting particles are involved. We shall denote by X and

Y the two colliding particles and define as usuali

1]

(ay + ay)°
= (gy + Py)® RGP
(g + py)*°

ctl o W
i

q,p are the initial and final X and Y momenta:

s+t+€=2M;+2My2. (17)

The imaginary part Axy(s,t) of the scattering amplitude is expected to
- be the most important contribution to high=-energy scattering, since it
is directly connected through unitarity to the inelastic processes.

This has been verified in (7 N) scattering already around 1.5 GeV.

In the forward direction the A_ (s t) is related to the total

cross-section by the optical theorem :
A(s,0) = 2<1W'0T(s). | (2)

As a consequence of the optical theorem we want to show that, at high
. energy, A(s t) must have a strong and narrow peak in the forward direc-

tlon, whose w1dth is roughly inversely proportional to the total cross-
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section. The total elastic cross-section satisfies the obvious in-

equaiityﬁ A
(o]}
_1 [ |E(s,8)|7 s 1 A(s,1)\?
C)'e].(s) — S'f 8r dq Tims .| 8q at ) (3)
h max
§ - - 2
where tmax == Lqg",

On the other hand, using the optical theorem we can write:
(s, %) '=.2qw%<ﬂs>v(s,t> o | (&)
where the form factor U(s,t) is normalized to:
| U(s,0) = 1.

Substituting Eq. (&) into Eq. (3) we get:

o3

el : ,
" o ©)

A

16

<t >

© . where FER .
0

<t =‘f lu(s,8)]%at (5")
max

is the width of the forward diffraction peak. Eq. (5) gives a very
© strong limitation on <t 5>,
The relation (5) is roughly satisfied with the equality sign.

In fact, taking as an example the N scattering in the two GeV regions

we have
1.5 ~ 1
O‘,Il uz ’ O_e 5 GT

and so <t > £ 10 4% which is of the same order of the width of the dif=-
fraction peak., This means that the low momentum transfer scattering
is so important to saturate the unitarity condition, and to leave very
little place for +the rest.
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Let us discuss now the information one can get on A(s,t) from
dispersion theory. The Mandelstam representation allows us to write

the following fixed energy spectral representation:

s pa(sett) 1 , p2(s,%")
A(s,t) = ﬂ,/adt T o /\dt R (6)
aq a2

The real functions ps and p, are the two-dimensional spectral functions
introduced by Mandelstam. The lower limits a4 and ap depend on the
nature of the particles exchanged in the (X,Y) scattering: a4 is always
of the order of Lu?; a» is ~ Lu® for (rm) and (NN) scattering and is
M* for (wN) scattering.

Here we are interested in the features of the forward difrac-
tion peak; +this will lead us to study the amplitude only for small
(X 9u?) positive or negative values of t. Because of Eq. (1') for
energy high enough, the singularities in t are very far from the values
of t in which we are interested and will have a very small influence on

the amplitude A.

We shall therefore only take into account the effeot of pg(s,t).
Let us discuss now the different contributions to p. Using unitarify
in the chamel X+ X » Y+ Y (see Appendix) we can decompose p(s,t) as a
sum of contributions coming from the different groups of particles which
can be exchanged between X and Y. _The variable t represents the square

of the "mass" (i.e., the total c.m. energy) of each group of particles.

Therefore the larger the number of exchanged particles, the
more distant from the physical region will be the singularities of A(s,t)
On the other hand, we have already seen that A(s,t) has a very large
peak of width ~ 10 p® in the forward direction and is almost zero every-
where else. This strongly suggests that the region of singularities
for Lu? <t < 16u? (the so-called "strip") gives the dominating contri-
bution to the integral (6).

Therefore the contribution of the two-pion states will be
the most important since it gives the only contribution to p(s,t) for
Lyp? <t <16 for o and 7N and 4pu? £t < 9u® for NN,
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Thls result is the dispersive analogue of the: geometrical
argument Wthh had led us to believe that ‘the external part of the
nucleonvstructure gives the largest effect to the hlgh-energy cross=
_seqtioné. Let us now consider in detail the two-pion term. In

the Appendix it is shown that pﬂw(s,t) can be written in the form:

' ) * ’
by (s t) = /]xds1 dsa‘Koﬁst;‘s,sz)Axﬁ(gi,t)Ayn(sg,t) (D)
‘ ' -
where .k L
Ko(st; 3152) =0 for %, >t and Vs < Vs, + Vs
cand . ; | o
Ko(s b s152) = = : e — > (8)
» 16V (sy5152) Vo[t~ t0(s,5182)]
_ for t 2 to and Vs > VET Vg:
" where ... -~
B(s,5182) . (s, : =]

gﬂﬂ(s,s1sg) = A{}fsz + 8| 8q82

2 ;;2 (51 + 82 )J + ¥ (sq = 52)2}

gy (ss5152) =L{uzsz rs|8182 = 2 sap? = 5o (I +u2)] + 2 (s =82)% 4

- | > (8%)
+ [(51 =82)(u® = M2) + (u* - MZ)Z] Sz}
gNﬁ(s’s‘SZ)' =4{u252 + 5[3132 + (1 —u2)2 - (M 1 4®) (51 + 52 ):l
+ 12 (s4 ;-52 )2}

and Axﬂ(s,t) and Ayﬁ(s,t) are the absorptive parts of the (Xw) and
(Yr) scattering amplitudes. The physical meaning of Eq. (7) is il-
lustrated in Fig. 1. p”ﬂ(s,t) is related to all inelgstic processes

in which only one pion is exchanged between X and Y. Vsy and Vs: are
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the energies of the two groups of particles produced in such a collision.

X .
tained in the two black boxes. The function K(s,t;sysz) is the lMandelstam

A and Ayﬁ are the elastic amplitudes for the two subprocesses con-
spectral function of the perturbation graph in Fig. 2, and represents

- the weight with which the different groups of particles in Fig. 1 con-
tribute to the elastic diffraction scattering. TEgs. (8) and (8’) show
that the spectralfunction is different from zero only for t > to(s;sysz);
in particular, we must always have Vs 2 Vs1 + ng. The boundary curves
t = to are called the Landau curves; it is easy to verify that we can
have to < 16 u? only when V:T + VE: << é; In other words, all values
of s4,s52 for which Vs; + Vs, < Vs are kinematically possible, but Vsy
and VE: must both be rather small as dompared to Vs in ordersfo have

contributions from the strip.

We understand here that the process of diffraction begins at
energies for which some Landau curves have already entered into the
strip. It is easy to verify that for wN scattering the forward peak

“appears near 900 MeV which is just the energy for which the first Landau
‘curve has entered into the strip. This faet shows, for example, that
fthe pion-pion scattering'must be of some impdrtance near its Landau

' curve (characterized by s = L u®), i.e., that (77) scattering must have
its imporfance e%eh‘ét low energies (far before the region around

s =20 + 30 u® at which the T = J = 1 resonance is expected to appear).

Eq. (7) is the starting point for our investigation of dif-
fraction scattering. It gives a relation between the absorptive part
at an energy s and those at the lower energies s; and s: ¢ ) In the
next section we shall také"advaﬁtage of the fact that s4 and s, must be

smaller than s in order to obtain an approximate solution of Eq. (7).

III. EXPRESSIONS FOR THE ABSORPTIVE AMPLITUDES

In order to solve the self-~consistent problem given by
Egs. (6) and (7), we want first to write down an explicit expression

for the absorption amplitude valid at all energies.

0f course, at low energy in the resonance region the impor-
tant contribution will not come from the two-pion singularities which

become important only in the diffraction region,
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We shall therefore write

Axy(st) = Ag&(st) + #;.[[[ dt’dsqdsa K(SE§ :S’SZ) (3¢,t‘)@y (52,t")
(9)

where Aiy(st) is the contribution to the absorptive part of the
emplitude coming from the (w7) or (wN) resonances and bound states.
Therefore it will be very important at low energy and then drop to zero

very rapidly.

Since for low energy the singularities in t are far, both

from the physical region and from the strip, one can safely write7

R ~ R R
Axy(st) X Axy(s,o) =2qVs O'Xy(s). (10)

Let us now consider the meaning of Eq. (9) for the different
scattering processes. In the case of (ww) scattering, Eq. (9) is a
non-linear equation involving only the (7w#) amplitude. The #N equa=-
tion is a linear equation whose kernel contains (w#) amplitude.
Finally the (NN) amplitude can be obtained directly once the (wN)

amplitude is known.,

This corresponds to the usual classification of the different

processes given by the Mandelstam representation,

We see that the only inputsone has to insert in Eg. (9) are

the values of low=-energy pion-pion and pion-nucleon oross=-sections.

Let us now solve Eq. (9) by iteration: we obtain

a(st) = A2 (o) 4 ;-gfff at'ds,as, Kaloablingsa) R (o) A  (s2) +

. —-///f atBds, dsadss K‘(s’t,’_s’sas3) 2 (s (Sa)A (s5) +
. (11)

where
t” d S.A
Ky (s,t’;5¢8283) = j],t” = {Ko(st’;s1sA)Ko(sAt”;3233) +
+ Ko (s /58,53 )Ko(sAt”;swz)} (12)
etCs coscoe .
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It can immediately be seen.:that -

K._zgs,t; 51,Sa°fesi)?¥,0.°nly for.fg pS Vsj . (13)
g ,
_ Thls implies that since Is [ > 4 p® for each finite value
of s the interaction sequence will only have & finite numbegwof term,
so that Eq. (11) will indeed represent a solution of Eq. (10).
We have, however, still to verify thﬂf the sdlutionu({1) is
a phy51cally acceptable one in which the maximum contribution comes

from the 1ntegrat10n range 1n51de the strlp.

ThlS is clear for the first term since only small values of

s,,sg appear in the sum and the integral in t'-ls rapidly convergent.,

On the other hand, it is very difficult to obtain a direct
estimate of the higher order terms since different kernels K, are os-
cillating functions.

vTherefore in order to be able to study the form and the con-
sistency of the expansion (11) we shall transform the different: terms
of this sum into integrals on a positive definite function.

Let us first of all recall that K. (st, s,sé) is the Mandélstam
spectral function of the perturbation graph of Fig. 2. Now it is shown
in Appendix 2 that the functions Ki_é(s,tgéisz.aosi) are the Mandelstam

spectral functions of the perturbgtion graphs of Fig. 3.

Let ﬁé now rewrite'Edf“({W}‘iﬁ“fhe-fdrm‘“
A(s t) = A (s) + /]‘ds1dsz Io(s t; 3132) A (s1) A (sz) +

+ #“5‘/// d.S1dSzdS3 I1 (S,t;S1SQSz) A (51) A (Sg) A (53) +

o + -ooso"o‘e . S I ‘ (11"')
where » ( )
. Nt K. S,b/ 581520008,
1 - 2 2
i_z(s,t;s1sga..si) = ;‘/ a! —Z : = (15)
| | -t
ap® e
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The new functions Ii_a(s,t;si) are the absorptive parts in
the s channel of the elastic amplitudes given by the graphs in Fig. 3.

Those quantities can be computed directly by using unhitarity
in the channel s, i.e., by cutting vertically the graphs of Fig. 3.

. 8
"Thus we can write

2 4 2 4
I, ,(s,t58152000s,) = 1 [S(k,—s,)d ke 8(kf-5,)a%%5...

C2(am ) (g, =#5 ) (v, = 4%) e ‘
b= 3,00, 0% (g qy -E %) (16)
(uxi-1 - “2>(vxi-1 - #%)
Yy T (qx -k )? ; Vg1 T (Px - k) .
| : : (17)

v
Xr

QW
S——"
0
/@
Ll
!
gl
e
N’

e = (57 )

Let us now discuss the properties of the integral (16). The
integrand is always positive definite and the largest contribution will
~come from those integration regions for which all uxj and vxj are small,

We remark here that:.
1) ell denominators can be simultaneously small only for ZVEE << s;

2) the integral I is a rapidly decreasing function of the momentum
trensfer t ; this means that the most important contribution to the

spectral integrals in Eq. (11) do indeed come from the strip.

Let us now use Eq. (14) for a simple comparison with experi-
ment. Let us consider (mN) scattering in the GeV region. Only the

first term of the series is important:

A (sit) =25 ][ dsydse To(sit; 3152) 20yVsy 0oy (se)2a:Vs; op (s2)  (18)

where _ | l
Io(sis si8:) = = g === : F(f) (19)

R BRASEES
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log (x + V1+x%). : (20)

where - ”F?<J$i-ﬁ5xi>=
0

xV1+x?

For Vs 5% Vsy + VE: ~to will be:very near to its lowest value L u?, There-

fore we. can get approximately ' L _
N 5 L
A(st) = A(s,o)F(m—>. (21)

This shows that, at least at intermediate énéfgies;*tﬂé'éhéﬁe
of the dlffractlon pattern depends weakly both on the process and on

- the 1n01dent energy.

" This is very reasonable from the physical point of view and

in good agreement with experiment.

In Figs. La) and‘hb) a comparison with experimental data at
1.8 s) and 5 GeV °/ is reported. At 5 GeV the theoreticel curve is
less peaked than the experimental onej: the'dotted curve represents the

result of an estimate of the higher order terms.

IV. A MODEL FdR H’I"GH'-ENERGY INTERACTION

' In the precedlng sectlon we have obtalned expr8331ons for the
bsorptlve part of the soatterlng amplltude. ThlS is all that one can
obtain dlrectly on the basis of a dispersion theory of elastlc scat-
terlng. ' Wé want now to show that the form of our result siuggests
strongly a definite :.model about the inelastic processes responsible for
the absorption process. - Let us write explicitly the expreséiqnlfor

the total cross-section given by Eqs, (14) and (16):

where

AOk

ds,dsg...ds1 X

2q'\/° ‘
X 2q:Vsy o (sy) 2955 O (Sz)--- 2q‘/-<7 (s;) I, _,(s58,)

- (23)
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% oy 1 : ,
whgre Ii-?fffsi? = Erz;;g'/:.fj’F(qx,qy,ki,si> x

(2u)
x 8 (kf-s1 )a%k, 8(k§—é;)d4kg...S(kf—si)d“k],; 8 (qrq, =2 k;)

F(qx,qy;k.,S.)= 1(-_ .) 2 e 2 2
\ 4, i’7i (21r)3 i-2 [’('qx—k‘ Y2_u?] [(qx"kr'kz)a"“ﬂ "'[(qx—k""ki-, )2_#23

(25)

. It is very reasonsble to consider the different terms oy in the sum
(22) as different partial cross-sections corresponding to the production

of. i groups of particles.

The important <contributions to the integral (23) come from the
energies ‘of the different groups of particles corresponding to a large
. scattering cross-=section. In other words the dominating effect will be
the production of several (mm) or (7N) isobars. Let us now examine. the
form for o, given by Egs. (23), (24) and (25). . Also in this case one
cen redsonebly -interpret the integrand F(qqu k. ) as the angular distri-

bution of the different isobars in the hlgh—energy collisions 1-).

We are therefore led to the following model illustrated in
Fig. 5.
f)' The incomihg pafticles exchange a single pion.
2)3>The produced particles are emitted either by the initial pérticleé
-or by the intermediate pion. In other words the emissiom must

take place either from one. of the two vertlces or by the meson propa=-

gation.

3) In each single act of emission either one particle or a group of low-

energy particles will be produced.

4) The differential cross-section for production is given by

1
16q\/- 7T1+2

do é

F(a,ay sk, »3; )2qﬂ/-0'(s1)8(k1 51)a%k; +e

w/';; c (si)S(k;-si)d"kiB“(qx +qy-2 k).  (26)
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Of course, Fq. (26) could have been derived more directly by summing
the series of Feynman graphs shown in Fig. 5 2/, Howeﬁer, it would
have been difficult in that case to have any estimate of the order of
magnitude of tﬁe'neglebted graphs and of the error introduced in the

different extrapolations in the mass variable.

The dispersion analysis gives very strong argumehts.implying
that the graphs selected in Fig. 5 are the dominating effect in high-

energy collisions.

We want to discuss now some qualitative features of the model.,
Let us consider a fixed incident energy. For each pair of pions one
wants to produce one has to add one extra propagator 1/(t-u?)%. The
average multiplicity will be therefore determined by the competition of
the graphs with different number of denominators. For a small number
of mesons produced it will be possible kinematically to make all denomi-
nators of the order of a few p®., For a larger number if will no longer
be possiblé to have all small denominators; those terms will become
"therefbre less and less important, - We have thus to expect an average

multiplicity much lower than that predicted by the statistical model.

" About the angular distributions in a particular production
process, the most probable configurations will be those corresponding
to the lowest value for the product of all denominators. This happens
first of all when all transverse momenta are very small, In the c;ﬁ.
system we have to expect two jets of particles collimated in the for-
ward and in the backward direction. An approximate calculation shows
that the different groups of particles in the two beams will have dif-
ferent energies decreasing rapidly from the maximum available energy to

ZeXro.

V. CONCLUSIONS -
Let us review briefly the different points which have been

raised in this paper.

The‘empiribal basis for the model proposed here comes from

the fact that the high-energy total cross-section has a constant and
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rather large value. This implies that the collisions with large im=-
pact parameters give the most important effect. This fact is ex-

pressed in a more precise form by showing [see Eq. (4)] that a large
cross-section implies a very narrow peak in A(s+t) and therefore the

two~-pion singularities give the dominating effect,

An eveluation of the two~pion exchange effect in terms of
the low-energy (wm) and (#N) cross-section has allowed us to obtain
definite expressions for the total cross-sections and for the absorp-

tive part of the scattering amplitude.

The form of this result has suggested to us that a well-
defined group of Feynman graphs, namely the "most peripheral", give
the dominating effect in highFenergy collisions. The reason'ﬁhy the
graphs not included in the model are not expected to give a large
contribution at high energy, i1s unitarity, and its limitations on
high-energy amplitudes. It is, however, not easy to express those

limitations directly for the inelastic graphs.

The model gives unambiguous prediction for all features
of high-energy collision; work is now in progress to evaluate
numerically the consequences of the model. A detailed comparison

between theory and experiment will be most interesting.

One point which might look somewhat surprising is the fact
that the model contains only locw-energy parameters. Thus, byilook-
ing at the general features of high-energy collisions, one does not

learn anything essentially new as conpared to low-energy physics.

The following example might be useful to clarify the situa-
tion. Consider the elastic scattering of high-energy electrons by
protoné.and:suppose one asks very general questions such as: in what
direction is the majority of the electron scattered and with what
croés—séction?‘ The answer is that the cross-section is dominated by a
Rutherford denominator ard that the great majority of the electrons
are scattered around the forward direction with a cross-section which
depends only on the renormalized charge e which is certainly a low-
energy parameter [of course much better known than low-energy (mm)

interaction'].

1898 /TH, 205/kw
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If one wants to get new and interesfing information about
the nucleon form factors one has to lose a large factor in intensity

and to look for the rare events which take place at large angles.

In the same manner if one wants to test the internal part
of the nucleon by means of strong interactions one has to look for
those collisions with large momentum transfer which lie outside the

range of our model,

Also in this case one has probably to lose an appreciable

factor in intensity. .
‘ . One other important point is that, as pointed out by Chew
and Frautschi, our understanding of high-energy phenomena might im-

prove .the status of our theories of low=-energy scattering.

One can get important informaetion about low-energy scat-
tering by means of the customary dispersion relations at fixed momen-

tum transfer.

Our model allows to obtain the imaginary part of the scat-
tering amplitudes at high energy and one will not be obliged, as in
the past, to cut the dispersion integrals above the (3,3) resonance
energy. This will probably lead to a reduction of the number of in-
dependent parameters one had to introduce in order to explain the

main features of low-energy scattering.

*
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APPENDIX

Let us con31der the absorptlve part of the scattering ampli-
tude in the channel X+X - Y+7Y. ey b '

U51ng the unltarlty condltlon and taklng as 1ntermedlate

states the two pions only we have

Bg(et) = 7;;[ ‘a.¥, [(a- %PJJF[mwQZﬂMq-u)x

. (A1)
. 8[(qx+p --q)2 uel .
.}v"-" )
U51ng the fixed momentum transfer dlsper51on relation we have:
| A‘ (s 5y, p A2 (t’ ,8)
*“?“iw[ S *wf gt @)

and substituting in Eg. (Ai1) we shall obtain four terms. We are only
interested in the singularity of the absorptive part in the s variable

as explained in the text, i.e.,

—ds! . (A‘B)

and we can drop the crossed terms which “gives singularity in t.

The two remalnlng terms give oontrlbutlon to p (st) In our
case in which we neglect 1sotop10 dependence, the two 1ntermed1ate pions
are 1dentlca1‘and also the two terms give identical contribution. There-~
fore we shall insert in Eq. (A.1) only the first term of Eq. (A.2). The
factor 2 is compensated by the normalization of the two identical

" particle phase spaces. We obtain:

As(s,t) =7 f f dsids, b (si,t) A (s2,8) T o(s,t58182) (&)
Ko(s t35455)
where Ix}'-c'(s;t;s1 52) = 7-; S” — S1 &4 ds’ (Ao5)
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and
K(s,tjs9s2) = - 'l[ d*q S(QZ-#2)5[(93{*’?}('(1)2-#2]3[51 - (Q“qx)z] X

=

x 8[s2 = (g+ qy)zl .

From Egs. (A.3), (A«s) eand (A.5) we get (4.6)
* -
me(S,t) = 7:-?][ dsyds, Axw(s“t),Ayw(sa’t) K(S’t;5152) . (Ae7)

We note that K is the Mandelstam spectral function of the
4° order graph., This can be seen by direct inspection of Eg. (A.6) or
simply by using the general fe¢rmula (A.7) and substituting for
A(s,t) =n 8(s~5) which is the 2° order absorptive part.

This iteration proecedure to construct the spectral function
of the 4° order graph using ‘he unitarity condition and the analiticity
properties (which was first worked out by Mandelstam) can be used in
order to obtain the spectral functions of higher-order graphs. For the
6° order diagram in which we are interested, substituting in Eq. (A.7)
the absorptive part of the amplitude up to the L4° order

A(s,t) = Ae(s,t) + he(s,8) =m8(s-5) + & %&%%L

and collecting the crossed terms A§A4+nAjA2 we get
: S dsAdt’ _
pe(st) = ""é’f/-;;-r-fg {Ko(s,t;mSA)Kc(sAt’;Szw) +
+ Ko(s,t3s s3)Ko(s t’;s1sz):} .
In this manner we have verified the Ky in the text is the 6° order spec-

tral function. In a similar way it is possible to prove that tho K

are the Mandelstam spectral function of the (p4-2)°'order graphs.,
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S, Mandelstam, Phys.Rev. 112, 1344 (1958); Phys.Rev. 115, 1741
and 1752 (1959). » |

Our amplitudes 3&3 ,t) correspond to the Feynman ones muitiplied
by a factor V2M for each external nucleon line,

One mlght be tempted to approx1mate the integrals in Eq. (7) vy
taking in the r.h.s.

A(st) = A‘(sé) =2qWop . (1)

One. would obtain

A(S,t if/f d‘t/dS1d_52 St, -S.1z2 q1W10“T(S1 )qZWZGT(SZ) (II)

and

GT(S) = Eﬁ%? [Z[dt’d31dsz K(S t; 5152) Q1W10'(51)QZW20'(52) (111)

Equation (III) torresponds to what one would obtain-by integra-
ting over all energies and angles the peripheral formula of
Salzman and Salzmani," -Now the approximation (I) is only justi-
fied when in the integral (7) the variables sy and s, are so
small that the sinularities in t are far from the strlpo

We know that Eq. (III) grossly overestimates the total.cross-
sections at hlgh energies. On the other hand, Eq. (II) for
A(s, t) would give a shape for diffraction scattering in com-
plete dlsagreement w1th experlment.

7) The reasoning leading to Eqs. (9) and (10) can also be understood

in the following manner. - Consider for sake of definiteness
the case of mm scattering. We can separate the T matrix into

1898 /TH. 205 /kw

four parts, T = T,«+T2-+T3-+To, where Ty ,T2,Ts have the two-pion

singularities between L’ and Ymax (whlch may be as usual larger_

than the inelastic 51ngu1ur1tles at 16 u®) in the variables s,t,%
and Ty has no low singularities in any variables. In the spirit
of the strip approximation one can disregard the effect of To;

Ty sT2,Ts can be computed once the singularities in the strip are
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known. Taking the imaginary part (in the s channel) of T
we get:

A =A1+A2+A3o

A, and A; are_the contributions to A given in Egq. (6), A; cor-
responds to AR of Eg. (9) which has to vanish for s outside
the elastic region.

We see that it is in principle possible in tﬁrms of elastic
scattering to compute thé t dependence of A™(st) and there-
fore to improve on the simple approximation (10).

8) Here we are making use of thé important fact that a perturbation

Feynman graph can alwaeys be computed by using unitarity both
in the s and in the t channel.,

For the ladder graphs of Fige. 3 the use of unitarity in channel

t allows us to consider only graphs with only four external lines
and therefore to use at each step the Mandelstam representation.
From the computational point of view, however, one has the big
disadvantage of the possibility of many energy denominators which
can have both signs giving rise to oscillations,

On the other hand, unitarity in the s channel introduces im-
mediately the amplitudes for the inelastic processes. So its
use is at the moment impossible in the framework of a general
theory of strong interaction since we have not yet any general
representation (like the Mandelstam one) for inelastic ampli-
tudes. However, if we are able, as in our case, to reduce the
whole problem to the computation of the well-defined perturba-
tion graphs of Fig. 3, then the unitarity in the s channel has
an enormous advantage since it has to be used only once and
gives rise to well convergent integrals on a positive definite
integrand.

9) R.C. Whitten and M.M. Block, Phys.Rev. 111, 1676 (1958).
10) R.G. Thomas, Jr., Phys.Rev. 120, 1015 (1960).

11) An important feature of the model is that all integrations on si

are limited to the resonance region. = This automatically ensures
[see Eq. (25)] that the important contribution comes from small
values of the different pion momentum transfer t.. This is not
equivalent to the procedure of cutting-off the i%tegrations to
small values. Using that procedure and choosing a sufficiently
high value of the initial energy, one would still have integra-
tions on large values of sj. '

12) Multijet graphs of the kind shown in Fig. 5 have been first con-
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sidered by V.B. Berestetsky and Ya. Pomeranchuk, Nucl. Physics
22, 629 (1961).
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FIGURE CAPTIONS

Graphs contributing to Eq. (7).
The perturbation graph corresponding to Ka(s,t;sysz2).
The perturbation graphs corresponding to Ki(s,t;s,sz...sn).

7N scattering angular distribution taken from reference 5)
compared with the theroetical diffraction curve [Eq. (21)
of Section III].

7N scattering angular distribution taken from reference 6)
compared with the theoretical diffraction curve [Eq. (21)
of Section III] and with the improved theory (broken
curve ).

The theoretical curves are normelized to the first point.

Diagrammetic representation of the production process in:
a) mw interaction; the masses Syeees, will be of the
order of 30 u® corresponding to the w7 resonance in
the J =T = 1 state or ~4 pu?® if there is a strong s-wave

interaction at threshold.

b) 7N interaction; the mass S5 connected with the nucleon
will likely be of the order of W; corresponding to the
(3,3) resonance. The other masses will be similar to

those of the 77w case.

c) NN interaction; the two masses sy and S5 connected
with the nucleon will be ~ W.2, the others like the =7

case.
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